[2026-01-11] Deep Learning-Based DDoS Detection in SDN Networks with Explainable AI Transparency

๐Ÿฆฅ ๋ณธ๋ฌธ

Intro

Software-Defined Networking (SDN)

์†Œํ”„ํŠธ์›จ์–ด ์ •์˜ ๋„คํŠธ์›Œํ‚น. control plane๊ณผ data plane์„ ๋ถ„๋ฆฌํ•˜์—ฌ ์ค‘์•™ ์ง‘์ค‘ํ™”.

  • Control plane : ๋ผ์šฐํŒ… ํ…Œ์ด๋ธ” ์ƒ์„ฑ, ๋„คํŠธ์›Œํฌ Topology ํŒŒ์•… ๋“ฑ ์–ด๋А ๊ฒฝ๋กœ๋กœ ์ด๋™ํ•  ์ง€ ๊ฒฐ์ •ํ•˜๋Š” ๋ถ€๋ถ„
  • Data plane : Control plane์— ๋”ฐ๋ผ ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํŒจํ‚ท ์ „๋‹ฌ

Architecture

image.png

  • Application Layer : ๋„คํŠธ์›Œํฌ ๋ณด์•ˆ, ์นจ์ž… ํƒ์ง€ ์‹œ์Šคํ…œ(IDS), Load Balancing ๊ฐ™์€ ๋„คํŠธ์›Œํฌ ์„œ๋น„์Šค์™€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜.
  • Control Layer : SDN controller
    • SDN controller : ์ค‘์•™ ์ง‘์ค‘์ ์œผ๋กœ ๋„คํŠธ์›Œํฌ ์Šค์œ„์น˜๋ฅผ ๊ด€๋ฆฌ
  • Infra Layer : ์‹ค์ œ ํŒจํ‚ท ์ „์†ก์„ ๋‹ด๋‹นํ•˜๋Š” ๋„คํŠธ์›Œํฌ ์žฅ๋น„.

Interface

  • Southbound API

    image.png

    • OpenFlow ํ”„๋กœํ† ์ฝœ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ปจํŠธ๋กค๋Ÿฌ-์Šค์œ„์น˜ ํ†ต์‹ 

    image.png

    • OpenFlow ํ”„๋กœํ† ์ฝœ์„ ์‚ฌ์šฉํ•˜์—ฌ Flow table์„ ๋ณ€๊ฒฝ.
      • Flow table : ๊ฐ flow ๋งˆ๋‹ค Rule, Action, Statistics (ํ†ต๊ณ„ ์ •๋ณด)๊ฐ€ ์žˆ์Œ

        image.png

๋™์ž‘ ํ๋ฆ„

  1. ๋„คํŠธ์›Œํฌ์— ํŒจํ‚ท ์ง„์ž…
  2. Flow Lookup
    • ์—ฌ๋Ÿฌ ํ…Œ์ด๋ธ”์„ ํ†ต๊ณผ

      image.png

  3. table์— ์žˆ๋Š” ๊ฒฝ์šฐ Action์„ ์ทจํ•œ ํ›„ Statistics๋ฅผ ์—…๋ฐ์ดํŠธ
  4. table์— ์—†๋Š” ๊ฒฝ์šฐ SDN Controller์— secure channel๋กœ ๋ณด๋ƒ„

[10] : A Multi-Classifier for DDoS Attacks Using Stacking Ensemble Deep Neural Network

CNN, LSTM, GRU๋ฅผ ๊ฒฐํ•ฉ. ์•™์ƒ๋ธ” ๊ธฐ๋ฒ•์„ ์ ์šฉ. ๋‹ค์ค‘ ๋ถ„๋ฅ˜๊ธฐ ๋ชจ๋ธ.

[11] : Detection of DDoS Attacks in Software Defined Networking Using Machine Learning Models

SDN ํ™˜๊ฒฝ์—์„œ DDoS ํƒ์ง€๋ฅผ ์œ„ํ•ด Random Forest, Decision Tree, Support Vector Machine (SVM), XGBoost๋ฅผ ํฌํ•จํ•œ 4๊ฐ€์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์‚ฌ์šฉ

[12] : Comparative Study for Identifying and Categorizing DDoS Attacks

ํ†ต๊ณ„์  ๊ธฐ๋ฒ•๊ณผ ๋จธ์‹  ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•. ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•๋ก ์˜ ๊ฐ•์ ๊ณผ ํ•œ๊ณ„. ML ๊ธฐ๋ฐ˜์ด ๋” ์„ฑ๋Šฅ์ด ๋›ฐ์–ด๋‚œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์คŒ. ์ด์ง„ ๋ถ„๋ฅ˜๋Š” ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์—ฌ์ฃผ์ง€๋งŒ ๋‹ค์ค‘ ๋ถ„๋ฅ˜๋Š” ์ •ํ™•๋„๊ฐ€ ๋–จ์–ด์ง. ๋˜ํ•œ ๋†’์€ ์—ฐ์‚ฐ ๋น„์šฉ๊ณผ ์ผ๋ถ€ ์—ฐ๊ตฌ์—์„œ๋Š” ํŠน์ • ๋ฐ์ดํ„ฐ์…‹์— ์˜์กดํ•จ

[13] : Improving DDoS Attack Detection Leveraging a Multi-aspect Ensemble Feature Selection

์•™์ƒ๋ธ” ํ”ผ์ฒ˜ ์„ ํƒ ๊ธฐ๋ฒ•์€ ํ†ต๊ณ„์  ํ•„ํ„ฐ๋ง ๋ฐฉ์‹๊ณผ ML์˜ ์กฐํ•ฉ. ์‹œ๊ฐ„ ๋‹จ์ถ•

METHODOLOGY

๋ฐ์ดํ„ฐ์…‹ : CIC-DDoS2019

์ „์ฒ˜๋ฆฌ

  • ์ผ๊ด€๋˜์ง€ ์•Š์€ ๊ฐ’์„ ์ œ๊ฑฐํ•˜์—ฌ ๋ฌด๊ฒฐ์„ฑ ๋ณด์žฅ
  • ๋ฒ”์ฃผํ˜• ํŠน์„ฑ๋“ค์€ ๋ ˆ์ด๋ธ” ์ธ์ฝ”๋”ฉ
  • Random under-sampling์„ ์ ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ๊ท ํ˜•
  • mutual information-based feature selection์„ ์‚ฌ์šฉํ•˜์—ฌ ์ค‘์š”ํ•œ ํŠน์„ฑ ์‹๋ณ„
  • min-max ์ •๊ทœํ™”๋ฅผ ํ†ตํ•ด 0~1 ์‚ฌ์ด๋กœ ์Šค์ผ€์ผ๋ง

ํ›ˆ๋ จ-ํ…Œ์ŠคํŠธ ๋ถ„ํ•  : ํ…Œ์ŠคํŠธ์šฉ 20%, ํ›ˆ๋ จ์šฉ 80%

๋ชจ๋ธ : CNN, LSTM, GRU, RNN, ANN

ํ‰๊ฐ€ : accuracy, recall, precision, F1-score, AUC score

  • AUC score : recall๊ณผ FP ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ROC ๊ณก์„ ์˜ ์•„๋ž˜ ๋ฉด์ . 1์— ๊ฐ€๊นŒ์šธ ์ˆ˜๋ก ์™„๋ฒฝํ•˜๊ฒŒ ๋ถ„๋ฅ˜ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธ

๋ชจ๋ธ ์„ค๋ช… : SHAP๋Š” ์ „์—ญ/๊ตญ์†Œ์  ์„ค๋ช…. LIME์€ ๊ตญ์†Œ์  ์„ค๋ช…์— ์‚ฌ์šฉ

Experimental results

image.png

์ „๋ฐ˜์ ์œผ๋กœ CNN๊ณผ ANN์ด ์šฐ์ˆ˜ํ•จ. ANN์ด ํ›ˆ๋ จ ์‹œ๊ฐ„๊ณผ ํ…Œ์ŠคํŠธ ์‹œ๊ฐ„์ด ํ›จ์”ฌ ์งง์Œ.

  • ANN Confusion Matrix

    image.png

    • Class 0 : ์ •์ƒ
    • Class 1 : DDoS ๊ณต๊ฒฉ
    • ๋ฏธํƒ์˜ ๊ฒฝ์šฐ๊ฐ€ 0๊ฑด
  • ROC ๊ณก์„  : ์žฌํ˜„์œจ๊ณผ FPR (์ •์ƒ์ธ๋ฐ ๊ณต๊ฒฉ์œผ๋กœ ์˜ˆ์ธก) ์‚ฌ์ด ๊ทธ๋ž˜ํ”„

    image.png

    ์˜คํƒ์ด ๊ฑฐ์˜ ์—†์–ด์„œ ๋ถ„๋ฅ˜๋ฅผ ์ž˜ํ•œ๋‹ค๋Š” ๋œป

Comparision with Exisiting State of the Work

image.png

ANN ๋ฐฉ์‹์ด ๊ฐ€์žฅ ์ข‹์Œ

Model Explanation

SHAP feature impact on model prediction of ANN

image.png

Inbound feature๊ฐ€ ์˜ˆ์ธก ๊ฒฐ๊ณผ์— ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ผ์นจ. inbound ๊ฐ’์ด ๋‚ฎ์„ ์ˆ˜๋ก SHAP ๊ฐ’์ด ๋‚ฎ์•„์ง€๊ณ , inbound ๊ฐ’์ด ๋†’์„ ์ˆ˜๋ก SHAP ๊ฐ’์ด ์ฆ๊ฐ€

  • โ€˜SHAP ๊ฐ’์ด ๋†’์•„์ง„๋‹ค, ๋‚ฎ์•„์ง„๋‹คโ€™์˜ ์˜๋ฏธ : SHAP ๊ฐ’์ด ๋†’์„ ์ˆ˜๋ก ๋” ๊ณต๊ฒฉ์œผ๋กœ ํŒ๋‹จ. ๋‚ฎ์„ ์ˆ˜๋ก ๋” ์ •์ƒ์œผ๋กœ ํŒ๋‹จ.

SHAP waterfall plot of ANN model for a TP instance

image.png

  • waterfall plot : ํŠน์ • ์˜ˆ์ธก ๊ฒฐ๊ณผ์— ๋Œ€ํ•ด ๊ฐ ํŠน์„ฑ์ด ๊ฒฐ๊ณผ๊ฐ’์„ ๋†’์ด๊ฑฐ๋‚˜ ๋‚ฎ์ถ”๋Š” ๋ฐ ์–ผ๋งˆ๋‚˜ ๊ธฐ์—ฌํ–ˆ๋Š”์ง€ ๋ณด์—ฌ์คŒ.
    • ๊ธฐ๋ณธ๊ฐ’ (E[f(X)]): ๋ชจ๋“  ๋ฐ์ดํ„ฐ์˜ ํ‰๊ท ์ ์ธ ์˜ˆ์ธก ๊ฒฐ๊ณผ๊ฐ’. ๊ทธ๋ž˜ํ”„์˜ ์‹œ์ž‘์ .
    • f(x) = 1 : ๋ชจ๋ธ์˜ ์ตœ์ข… ๊ฒฐ๊ณผ๊ฐ’. 1์ด๋ฏ€๋กœ 100% ํ™•๋ฅ ๋กœ DDoS ๊ณต๊ฒฉ
    • Inbound๊ฐ€ 1์ธ ํŠน์„ฑ์ด 12%๋‚˜ ์˜ํ–ฅ์„ ์คŒ
    • ACK Flag๊ฐ€ 0์ธ ํŠน์„ฑ์ด ์ •์ƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๊ฒŒ ํ•˜์ง€๋งŒ ๋ฏธ๋ฏธํ•จ.

LIME plot of ANN model for a TP instance

image.png)

URG Flag Count๊ฐ€ 0๋ณด๋‹ค ์ž‘๊ฑฐ๋‚˜ ๊ฐ™์„ ๋•Œ, ๊ฐ€์žฅ Positive๋กœ ๋ถ„๋ฅ˜ํ•  ํ™•๋ฅ ์„ ๋†’์ž„. Inbound๊ฐ€ 0๋ณด๋‹ค ์ž‘์„ ๋•Œ, Negative(์ •์ƒ)์ด๋ผ๊ณ  ํŒ๋‹จํ•  ํ™•๋ฅ ์„ ๋†’์ž„.

SHAP waterfall plot of ANN model for a TN instance

image.png

์ •์ƒ ํŠธ๋ž˜ํ”ฝ ํŒ๋‹จ์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ์ค€ feature. Inbound๊ฐ€ 0์ผ ๋•Œ, ์ •์ƒ ํŒ๋‹จ์ด๋ผ๋Š” ๊ฒƒ์— 20% ์ •๋„์˜ ์˜ํ–ฅ๋ ฅ์„ ๋ผ์นจ

LIME plot of ANN model for a TN instance

image.png

Discussion

  • SDN ํ™˜๊ฒฝ ์„ค์ •์—์„œ์˜ ํšจ๊ณผ์„ฑ์— ๋Œ€ํ•œ ์‹ค์ฆ์ ์ธ ๋ฐ์ดํ„ฐ๋Š” ํ™•๋ณด ๋ชปํ•จ
  • 4์ดˆ๋„ ๊ดœ์ฐฎ์€ ๊ฑด๊ฐ€? ๋ฐ์ดํ„ฐ์…‹์ด 2019์ธ๋ฐ ์ตœ์‹  ๋ฐ์ดํ„ฐ์…‹์—์„œ๋Š”..?

Categories:

Updated:

Leave a comment